

CONTENT

- Who is TOMRA?
- The Circular Economy in practice
- Digital TOMRA Insight
- Sorting technologies- what's next?

Publicly listed on Oslo Stock Exchange (OSEBX: TOM)

8.6 **BILLION NOK REVENUES IN 2018**

FOOD

MINING

REVERSE VENDING

Circular Economy

PLASTIC PACKAGING MATERIAL FLOWS

Why now?

INDUSTRIALIZING THE PROCESS FOR RECYCLED PLASTIC

- Create a demand for the plastic
- Output to be of high quality in order to replace virgin material up to 100%.
- Extract plastics from all waste streams (incl. landfill and incineration) to satisfy demand.
- Feasibility proven, working with multiple partners on commercialization.

WHAT DOES IT MEAN 'IT IS RECYCLABLE'

It is collected - introduction of waste collection systems globally.

It is detectable/sortable - make sure that the optical sorters can identify material. Please use the commonly sorted and recycled materials e.g. PE, PP, PET, PS.

It is recycled/processed - make sure that labels and glues can be washed off. Do not use material which will obstruct the reprocessing e.g. silicone.

It has an application - the recyclate can be used for various applications.

DESIGN FOR RECYCLING / ECODESIGN WORKSHOPS

DESIGN FOR RECYCLING – ECODESIGN WORKSHOP

Nye etiketter redder 260 tonn plast

Idun Tomatketchup og Idun Sennep får i vinter nye etiketter som øker resirkuleringsgraden av flaskene til over 70 prosent.

15.02.2019

COLLECTION/SORTING - IMPORTANCE OF MSW SORTING PLANTS

IVAR, Stavanger, NORWAY

- Municipal solid waste (MSW): 40 t/h + separately collected paper: 15 t/h
- 22 Sensor based sorting systems (NIR)
- Sorted products
 - PE film
 - PET bottles
 - PP
 - HDPE
 - PET trays or PS
 - Mixed plastics
- 3

~17-18 kg/ (cap * a)

Av. Norway collection 6-7 kg/(cap *a)

- Mixed paper + beverage carton
- Deinking paper negative
- Beverage carton
- Hot washing + extrusion line for film and PE/PP hard plastics

POST CONSUMER PLASTICS – HIGH QUALITY RECYCLING

TOMRA DIGITAL-ACCESS TO INFORMATION UNLOCKS NEW OPPORTUNITIES

GET THE MOST OUT OF YOUR PLANT

Reduce Downtime

Today: Identification of production gaps

Analysis of downtime

Future: Prediction of valve failure

Maximize

Throughput

Today: Evaluation of material distribution

Analysis of throughput variations

Future: Automated alarms and recommendations

INCREASE PROFITABILITY OF YOUR INVESTMENT

Reduce

Operational Cost

Today: Simplified re-ordering of spare-parts

Access to documentation

Future: Further integration into business processes

Sort to

Target Quality

Today: Data transparency in the back office

Fact-based decision making

Future: Sorting optimization across whole process

THE POWER OF DATA

Maximize your foundation for data-driven and fact-based decision making by increasing the sample size

No. of connected sorters

WHAT'S NEXT- NEW TECHNOLOGIES / MOTIVATION

Using a new technology to achieve the high product and customer requirements, which can not be solved using conventional technology.

SPECTRA OF NIR

WAVELENGTH

PE-HD vs PE-HD Silicon Cartridges

BASIC INFORMATION

Artificial intelligence

- is intelligence demonstrated by machines, in contrast to the natural intelligence displayed by humans
- is any technique that enables computers to mimic human intelligence
- Artificial intelligence is a part of computer science

Machine learning

- Is the scientific study of algorithm and statistical models.
 Computer systems use to perform a specific task without using explicit instructions.
- relying on patterns and inference instead Machine learning is a part of artificial intelligence

Deep Learning

- Use artificial neural networks which are inspired by information processing and distributed communication nodes in biological systems.
- Deep Learning is a part of machine Learning

DEEP LEARNING

Training a network can be compared to learning a toddler.

By showing an object several times and explaining what it is, the toddler trains himself.

After a while and several trainings it is possible to assign the objects correctly.

This principle is also pursued by Deep learning

DEEP LEARNING "GAIN"

Detection without Deep Learning

- Feature engineering working principle:
 - object characteristics must be defined
 - Shape / Ratio / Filling...

Impurities _ PE-HD SC

PE-HD

- simple image processing like Object Recognition [feature engineering] solve the problem only seemingly.
- as soon as objects touch, overlap or are deformed, this technique no longer works.
- Technology only works in the parameter specified by humans
- GAIN allows also detection of overlapping, touching, deformed and destroyed objects

GAIN

DEEP LEARNING-CASE STUDY

Input material				
Input material	PE-HD			
Grainsize	> 50 mm			
Bulk density	$50 - 60 \text{ kg/m}^3$			

PE-HD silicon cartridge 60 numb. of pieces

	Input	Recovery Step 1	Recovery step 2
PE-HD silicon cartridge number of pieces	60	58	2

Step 1 Recovery of PE-HD silicon Cartridges 96.7%

Step 2 Recovery of PE-HD silicon Cartridges 100%

WHAT'S NEXT- OVERCOMING TODAYS LIMITS – DIGITAL WATERMARKS

- Improve detection and sorting of materials, also of "difficult to sort / recycle" fractions
- Enable food and non-food recycling applications, among others
- Proof-of concept successful within Holy Grail project (open house May/ October in Germany)
- Further prototype development and industrial trials within Holy Grail 2.0

"Museums of the world save the past, recyclers - the future"

www.tomra.com/recycling